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Variations of the asset prices
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The empirical established non-Gaussian behavior of asset price fluctuations is studied using an analytical
approach. The analysis is based on a nonlinear Fokker-Planck equation with a self-organized feedback-
coupling term, devised as a fundamental model for price dynamics. The evidence, and the analytical form of
the memory term, are discussed in the context of statistical physics. It will be suggested that the memory term
in leading order offers a power law dependence with an expofiefite stationary solution of the probability
density leads asymptotically to a truncatedry eistribution, the characteristic expongiof which is related
to the exponen® by B=3/6—1. The empirical data can be reproducedésy5/4.
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I. INTRODUCTION process requires a knowledge of the total probability distri-
bution density. The difficulties in quantifying the fluctuations

In recent years, there has been increasing interest in apf asset prices, originated by many interactions between the
plying concepts and methods of statistical physics to studynarket elements considered above, are not only due to the
problems of the financial mark¢l—3] and other complex complexity of the internal elements but also to the many
systems from heartbeats to weatlidt, to politics [5], to  intractable external factors acting on it. To this aim, models
medical carg6], and further to ecology7]. Similar to sta- should be studied which capture the key features of the fi-
tistical physics the abovementioned systems, such as ecancial markets. Here we are interested in the time evolution
nomic ones, consist of a large number of interacting unit®f S(t) as the price of a financial asset at timerhe most
(“agents”). Hence experiences gained by studying complexcommon model of price dynamics, known as the geometric
physical systems might yield new results in economicsBrownian motion(for details and history, compare Ré¢1.])
However, agents making financial transactions believe irassumes that Ift) is a diffusive process. However, such an
“units,” the interaction of which is not quantified in detail. approach provides only a first step toward the behavior ob-
Consequently, economic systems are quite different, an@erved in empirical data. Systematic deviations from the
much more complex. Nevertheless, the evolution of financiafimple model predictions were observgi®?]. A more de-
data should be governed by probabilistic laws well known intailed discussion can be found, for instance, in REfs3]
statistical mechanicg8]. Apparently, various financial time and the literature cited there. Several alternative models be-
series undergo random processes as particles make Browniand geometric Brownian motion were proposed such as the
motions. Hence one of the reasons to analyze financial sys-evy stable non-Gaussian model3], Student'st distribu-
tems by methods developed for physical systems is the chalion [14]; and a mixture of Gaussian distributiptb] and the
lenge of understanding the dynamics of a strongly fluctuatingruncated Ley flight, either abrup{16] or smooth[17] or
system with a large number of interacting elemef@$  scale invarian{18]; for other models, see Ref3]. There
Moreover, simple models are discussed whose origin lies iseems to be well established evidence that the distribution
market scenari§10], and they yield an unusual type of mi- function in mind offers a non-Gaussian behavior, the center
crodynamics of more general interest. Another approach corpf which can be adjusted by kg distribution. Consequently,
sists of modeling the dynamics of money diredtlyt], where  the price volatility reveals a nondiffusive behavior at least on
the present amount of money is a time dependent quantityg sSmall time scale. Although the distribution is long tailed, it
the dynamics of which is studied by an evolution equation. reveals finite moments of any ordgi9].

The interacting elements of financial markets can be Whereas most previous approaches were based on an as-
grouped into two categories: the traders, such as mutuglumption of the price probability distributidA(t), and were
funds, brokerage firms, banks, and individual investors; anduantified by numerical investigations, the aim of this paper
assets, such as stocks, bonds, futures, and options. In thigto propose a dynamical equation fB8(t). Our ambition
context, the statistical properties of the time evolution of thefollows the line given by Black and Scholg20], which was
price play an important role in the modeling of financial successful in deriving a partial differential equation for a
markets. For example, the stochastic nature of the price of geometrical Brownian process. However, this equation does
financial asset is crucial for a rational pricing of a derivativenot take memory effects into account. On the other hand,
product issued on {i3]. The initial price of a new product, a such a feedback mechanism was considered in econophysics
new service, or a new stock certificate is determined by cey so called ARCH[21] and GARCH processg®2] in a
tain economical guidelines. But after the introduction of thefirst approximation. Because price fluctuations at tinage
new product into the market system, the actual price starts tiikewise determined by changing prices at previous tirhe
fluctuate due to the interaction between supply and demand<t, the evolution equation for the probability distribution
Hence the price leaves the initial value, and offers a stochad?(t) should include a memory term as a new ingredient.
tic behavior. The complete characterization of such a randorVioreover, we have supposed that this feedback is deter-

1063-651X/2001/642)/0261045)/$20.00 64 026104-1 ©2001 The American Physical Society



MICHAEL SCHULZ, STEFFEN TRIMPER, AND BEATRIX SCHULZ PHYSICAL REVIEW B4 026104

mined in a self-organized manner by the price distributioneconomical degrees of freedom which cannot be specified in
itself. As demonstrated in Ref23], such a feedback cou- detail. This fact is a characteristic feature of a variety of
pling can give rise to anomalous diffusion or localization. different complex systems.
Note that a relation between economic fluctuations and
anomalous diffusion was even discusdedl]. The basic
equation we have proposed is derived in the context of sta-
tistical physics by applying a projection formalism due to In this subsection a generalized equation is proposed
Mori [25]. As the result a nonlinear evolution equation of where couplings, such as those mentioned above are en-
Fokker-Planck type with an additional memory kernel isclosed. The situation for the asset price fluctuations is com-
found, the form and relevance of which are studied in thisparable with other problems in statistical physics of complex
paper. systems. In case information for all degrees of freedom is
available, one could formally derive an evolution equation
for the total probability density function. For instance, the
Liouville equation is such an evolution equation describing
A. Return thermodynamic systems. A general property of those equa-
In this section the central quantity of the model is intro-1onS is the local character with respect to all degrees of
duced, and its relation to a linear Fokker-Planck equation i&'€€dom and time. Unfortunately, neither in physics nor in
discussed. As stressed abot), the price of a financial financial systems can complete knowledge of all constituent

asset at time, is the fundamental function for subsequentelemems be quantified. Even the set of all prices comprises

analysis. Because, after an initial time interval, the price be®Nly @ sufficiently small subset of all degrees of freedom,

comes a fluctuating quantity, it is reasonable to investigat&€levant for the dynamics of an econosystem. According to a
the probability distribution function of an appropriate sto- standard method of statistical mechanics, let us eliminate all

chastic variable. One choice is to analyze the retaee Ref. Unknown or irrelevant degrees of freedom by a suitable pro-
[1]), jection operator formalisnj25]. Note that.the prpce_dure is
universal, and does not depend on special realizations of the
underlying complex systems such as many-particle systems,
' (1) financial markets, social populations, etc. The application of
an appropriately chosen projection operd#] on the total
tprobability distribution function leads to the so called
Nakajima—Zwanzig equatiof26], which describes the evo-
lution of a reduced distribution function in terms of the re-
mrgaining relevant variables. It should be stressed that the re-
sulting equation is rigorous now as before. In our model the
variablev is assumed to be the relevant one. Consequently,
the equation foP(v,t) reads

B. Nonlinear Fokker-Planck equation

Il. MODEL

S(t+At)
S(t)

I(H)=In

whereAt is a well defined short time interval. Assuming tha
trading is continuous and the limit— 0 exists, it seems to
be reasonable to use the velocit{t) =1(t)/At=d In t)/dt
as a quantity to characterize asset price fluctuations. The ti
evolution ofv (t) can be described when the probability den-
sity functionP(v,t) is available. Herd(v,t)dv is the prob-
ability of finding a velocity between andv +dv. Immedi-
ately after the introduction of the new product or the new
stock, the velocityy apparently shows a systematic change
following global trends. Furthermore, one expects the ap- t % .

pearance of Gaussian-like fluctuations around this determin- - J’Odt' Jiwdv'K(v—v',t—t')P(v',t')-
istic behavior. Thud(v,t) should follow a Fokker—Planck

equation: (€)

P(v,t)=M(v,t)P(v,t)

IP(v,1) _DaZP(v,t)
ot Jv?

B i[F(v)P(v 0] (o Boththe operatoM (v,t) and the memory kernd (v ,t) are
v T well defined formal expressions which determine the dynam-
ics of the probability density function. The procedure yields

The diffusion coefficienD determines the random motion of the required memory effect in a natural manner. In this sense
the velocityv, whereas the drift forc& (v) defines the gen- EQ- (3) can be regarded as a more general approach as the
eral trend of the price evolution. Here it is supposed that thé@Pove mentioned ARCH and GARCH processes. To proceed
trend is constant, at least approximately for a sufficient londurther, one needs a suitable representatiorMofand K,

time interval, i.e., the drift force is assumed to be fixedrespectively. If memory effects are excluded completely, all
F(v)=F,. Equation(2) will be problematic considering its other degrees of freedom projected out are apparently inde-
asymptotic behavior in the long time limit, where E)  pendent external stochastic variables. Thus the first term of
leads to a Gaussian behavior corresponding Piw,t)  EQ.(3) can be taken as the Fokker-Planck operator in accord-
~exp(—[v+Fqt]¥4Dt). Such a behavior is not observed by ing to Eq.(2),
empirical datd12,13. Instead, large price fluctuations occur

much more frequently than predicted by the Gaussian law.

We think that these d_eviations origin_ated fr_om th_e strong M(v,t)P(v,t)=D
coupling among all prices, and the interaction with other

PP(v,t) 9
T—g[F(U)P(U,t)], (4)
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with the diffusion coefficienD and the drift forceF (v,t).
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the probability distributiorP(v,t). The general form of such

The memory term takes into account the history of the pricean expansion can be written in the form

evolution. Formally, the kernel can be rewritten as

t o “
fdt’f dv'K(v—v',t—=t")P(v’',t")
0 — o0

P(v' t)
-

t 3]
=J;)dt’f dv'K(v—v',t—t") (5)
One can easily confirm that E¢p) guarantees the conserva-
tion of the probabilityfdvP(v,t)=1 at all timest. For this
purpose Eq(3) is integrated over all velocities, and Egs.
(4) and (5) are taken into account. Introducingo(t)
=[% _ dvP(v,1),

dPo(t")
a

&tPo(t)=—Jotdt’Jicde(v,t—t’) (6)

The Laplace transformation of E¢6), with respect to the
time, leads to

[

dvK(v,2)[zPy(2) — Po(t=0)],
(7)

which has the two solutions:izPy(z)=Py(t=0) and

% ..dvK(v,z)=—1. Because the second one is not a reli-
able solution, only the first solution is relevant for further
considerations. But this relation corresponds to the abov
mentioned conservation laywdv P(v,t)=1. Together, Egs.
(3)—(5), with the specified memory kerné&ee Sec. ), are
the basic equations for the subsequent analysis.

ZP()(Z)_ Po(t=0)= _f

Ill. RESULTS
A. Memory kernel

To study the influence of the memory effects in detail, we
have to specify the memory kernk(v,t). It is not yet en-

tirely clear how one should approach the problem. But oné&P

K(v,t)=P(v,t)"ZO AaP(v,)", (8)

where 6 is an exponent specified in the subsequent discus-
sion. Note that in the case of undercooled liquids the projec-
tion procedure suggests an exponént2 [27,28, which is

not maintained necessarily when the conceptual framework
is applied to financial systems. Finally, Eq8)—(5), com-
bined with the leading term of Ed8) yield a generalized
nonlinear Fokker-Planck equation

IP(v,1) _D(?ZP(v,t)

d
" 7~ 5o FoP(v.)]

Jdv
t o IP(v',t’
—)Jdt/f GIU'F’a(v—v’,t—t’)—(v )
0 —o ot’
9

[with A=\ andF(v,t)=F;]. Equation(9) is similar to that
given by Black and Scholg20]; however our basic equation
includes an additional nonlinear memory term describing the
required feedback mechanism. A conventional scaling trans-
formation for P, v, andt offers that the memory term is
relevant ford<3. A more detailed analysis of EQ) with a
d-dimensional vectov instead of the component suggests

@ critical dimensiord.= 2/(6—1). Below this critical dimen-
sion, the occurrence of anomalous behavior is expected. At
first view it seems to be an obvious assumption that memory
kernel [Eg. (8)] behaves regularly, i.e§ is a non-negative
integer exponent. Due to the projection formali§g®], 6

=0 and 1 are excluded. Consequently, ofky 2 remains.
This case, as already pointed out, is well known in studying
undercooled liquid§27,28 and very recently in analyzing
anomalous diffusion in a glasslike environmé28]. There-
fore, it is useful to summarize some results of the previous
proache§23,29,3Q, which are relevant in proceeding fur-

can gain insight by learning from such completely differentt€r in the present paper. In particular, the case2, leading

complex systems as undercooled liquids, where the conce
considered in this paper was applied successfully in explai
ing properties of dense systerf®7,2g. An idea similar to

[

arguments used in mode coupling theory was also recentlyy

adopted to study anomalous diffusip?3,29,30. The main

?

n_

the critical dimensiord.=2, can be studied using a per-
rbative renormalization group meth¢@3]. The analysis
offers the existence of several anomalous diffusion regimes,
induced by the strength of the coupling constanand the
fealization of the drift force. For example, for a vanishing

assumption for our model is that feedback originates from &"ift term and\ <0 a superdiffusive behavior was found to
coupling among prices, and consequently the kernel can b&¢ manifested by the behavior of the mean square displace-

considered a¥(v,t)=K[P(v,t)]. This relation implies the

ment v2~t?Z with a dynamical exponert<2, whereas a

reasonable claim that the characteristic time scale of thgositive couplingh>0 gave rise to localization evident by

probability function also the time scale of the memory essen
tially determines, in other words, if the prices fluctuate dur-
ing a certain time interval, then the memory term should
relax within the same order of magnitude. As a further con
sequence of the assumption, the structure of the kernel lea
to a nonlinear autonomous equation which is a feature o

the relationv®~ const. Whenevef=2, Eq.(9) can likewise

be analyzed numerically by mapping the problem on a
simple lattice model with hopping processes under the inclu-
'éon of a feedback mechaniqr29,30. In case of a negative
edback coupling\ <0, the numerical simulations con-

systems incorporating scaling behavior and self-organizatiorfirmed the superdiffusive behavior with?~t3’ for d=1

Now let us expand the memory kerdé€l P(v,t)] in terms of

[29], which is in reasonable agreement with the one loop
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1 B. Asymptotic solution

In this section a relation between the memory exporent
and the Ley exponents is derived. To this aim the
asymptotic distribution functiog(v) will be determined, the
existence of which was already argued above. In a first step
let us eliminate the drift term from E@9). This term repre-
sents the mean change of the price fluctuations, i.e., the trend

exponential of the time evolution of prices. As mentioned above, the drift
force is a constant quantitif,. Making a simple shiftv

0.1

0.01

1E-4 —X—Fgt the evolution equation for the price fluctuations
reads
1E-5 T T T T T T T T T T T 1
0 500 1000 1500 2000 2500 3000 aP(X,t) (?ZP(X,'[) t
X =D —A f dt’
Jt ax? 0

FIG. 1. Numerical simulation of the stationary probability dis-
tribution g(x) for a random process corresponding to E3).with « ' o0 , ,
Fo=0, =2, and\>0. For smallx, denoted by “Levi,” a Lary X _wdx P (x=x",t=t')
distribution with the exponenB=0.34 is observed, whereas for
large x, denoted by “exponential,” an exponential distribution is
realized.

aP(x’,t’). (11
d

tI

The probability distribution functiorP(x,t) converges to a
stationary distributiorg(x). Because we are interested in the

asymptotic limit for long times, let us make the ansatz
renormalization group approachez2/3/2{23]. In two dimen-

sions both renormalization group and numerical simulations P(x,t)=g(x)+ k(x,t), (12
[30] led to a diffusive behavior with a logarithmic correction

v2~tInt. For a positive coupling >0, localization was ob-
served to be renewed. The occurrence of localizatio
strongly indicates the convergence of the probability func
tion P(v,t) to a stable functiomy(v) for sufficient long times
P(v,t—»)=g(v), which are discussed now. Using the pre-
vious result§29] for =2, one obtains an exponential decay

with x(x,t)—0 fort—o. The Laplace transformation of Eq.
r%12) with respect to time leads B(x,z)=g(x)/z+ «(x,2),
where k(x,z) is regular forz—0. Thus the singular part of
Eq. (11) for z—0 defines an equation for the stationary so-
lution.

2 o«
for largev and a Ley distribution Dﬁj(zx) :)\f dx'gf%x—x")g(x")—rg%x). (13
X —o0
g(v)~[1+(v/vg)Pf 1t (10) Note that Eq.(13) follows from Eq. (11) after a Laplace

transformation using the initial conditio®(x,0)= &(x). The
Fourier transformation of Eq.13) with respect to the nor-
for small v. The memory exponen=2 leads to a Ley ~ Malized price fluctuations leads to
exponentB~0.34. In Fig. 1 the numerically simulated sta- ) _ o) o)
tionary probability distribution for a random process corre- Dkg(k)= =g (k)g(k) +1g*7(k), (14
sponding to Eq(9) is depicted, wher&,=0, =2, and\ p , , P
~0 are taken into account; for details of the simulations, sed/nereg”(K) is the Fourier transform o§’(x). Hence the
Ref.[29]. The appearance of such a stationary soluges)  Tormal solution forg(k) is given by
reflects even the situation expected for the evolving asset

price system{12]. Using the return =vAt (for small At, K= Ag(k) 15
e.g.,At=1min) as a measure for the velocity Mantegna g(k)= Dk2+Ng(D (k) (19
and Stanley found12], based on numerical study, a\ye

like regime described by(1)~[1+(I/1o)?**]™* with the  Especially, fork—0, it follows that

exponentB~1.4 for smalll, whereas an exponential decay

g(l)~exp(=H) occurs for largel. Obviously, both ap- k2 17t

proacheg12], and those presented fér=2, indicate a uni- gk)=1+ ——— (16)
versal behavior fog(v) which cannot be explained using a rg(0)

simple Gaussian model. But apparently the exponént . . ) .
~1.4 is much larger than the expongsw0.34 obtained for This solution corresponds to the asymptotic behavior for
6=2. However, as already stressed above, it cannot be e}@rgex—»

cluded that financial markets will be controlled by a nonin- 0 " 9 1o

teger exponen® in the memory kernel; this is discussed in _[Ag27(0) _[Ag7(0) 1

Sec. IIIB. 90~ —4p D Xp. @
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i.e., the exponential behavior for larges guaranteed for all  distribution function to its change in the past. Such a feed-
exponents @ provided g(?(0) is finite. The expansion back coupling is a feature of a dynamical complex system. A
g (k)=g'?(0)+c,k?+ - - - cannot be used for the discus- Systematic approach including memory effects is still open.
sion of largek and smallx, respectively. Here a power law However, our paper reveals that memory effects can lead to
g(x)~x"17# i.e., g(k)~k? andg(® (k) ~k?!F+D-1 is as- dramatic qhanges in the behay_ior as well as in. the long and
Sumed_ A Simp'e power Counting |eads to the re|at@n the ShOI’t time |ImItS. The emplrlca”y We” estab“shed Obser'
=3/9—1. This relation is again consistent with the require_yation of a non-Gaussia}n digtrit')ution. is confirmed in a strik-
ment #<3. Because of the fact that real price variations ardNd manner. The numerical findiid2] is also in accordance
characterized by a vy exponent=1.4 [12], a memory with a_nalyt|c_:al results baseql on a generalized Fokker_-PIanck
exponentd=5/4 is concluded. equatlo_n with a self.-con5|stent. memory term. Umyersal
These results show that financial processes can be dBroperties of the price fluctuations are achieved if the
scribed by evolution equations containing memory termsmemory kernel offers a power law behavior with respect to
These terms may have a more complicated strudicoen- f[he probability density. Apparently a rigorous model should
pare Egs(8) and (9)], but the asymptotic behavior is well include not only the memory kernel in leading order pre-

reflected by the leading term in E¢B). sented by Eq(9), but also higher order terms according to
the expansion in Eq@8). The main result of our paper is to
IV. CONCLUSIONS show that, if memory effects are relevant for market sce-

narios, the asymptotic behavior of small and large price fluc-
In this paper an attempt at an analytical approach for théuations can be explained by a nonlinear Fokker-Planck
description of market dynamics is proposed. In particular, @quation. Up to now it is not entirely clear which comple-
dynamical model for price distribution is considered. As thementary principle in economics determines the memory ex-
main ingredient, a nonlinear memory term is included, reponent §. However, our analysis suggests an exponent
sponsible for the feedback coupling of the momentary price=5/4.
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