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Variations of the asset prices
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The empirical established non-Gaussian behavior of asset price fluctuations is studied using an analytical
approach. The analysis is based on a nonlinear Fokker-Planck equation with a self-organized feedback-
coupling term, devised as a fundamental model for price dynamics. The evidence, and the analytical form of
the memory term, are discussed in the context of statistical physics. It will be suggested that the memory term
in leading order offers a power law dependence with an exponentu. The stationary solution of the probability
density leads asymptotically to a truncated Le´vy distribution, the characteristic exponentb of which is related
to the exponentu by b53/u21. The empirical data can be reproduced byu.5/4.
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I. INTRODUCTION

In recent years, there has been increasing interest in
plying concepts and methods of statistical physics to st
problems of the financial market@1–3# and other complex
systems from heartbeats to weather@4#, to politics @5#, to
medical care@6#, and further to ecology@7#. Similar to sta-
tistical physics the abovementioned systems, such as
nomic ones, consist of a large number of interacting un
~‘‘agents’’!. Hence experiences gained by studying comp
physical systems might yield new results in economi
However, agents making financial transactions believe
‘‘units,’’ the interaction of which is not quantified in detai
Consequently, economic systems are quite different,
much more complex. Nevertheless, the evolution of finan
data should be governed by probabilistic laws well known
statistical mechanics@8#. Apparently, various financial time
series undergo random processes as particles make Brow
motions. Hence one of the reasons to analyze financial
tems by methods developed for physical systems is the c
lenge of understanding the dynamics of a strongly fluctua
system with a large number of interacting elements@9#.
Moreover, simple models are discussed whose origin lie
market scenario@10#, and they yield an unusual type of m
crodynamics of more general interest. Another approach c
sists of modeling the dynamics of money directly@11#, where
the present amount of money is a time dependent quan
the dynamics of which is studied by an evolution equatio

The interacting elements of financial markets can
grouped into two categories: the traders, such as mu
funds, brokerage firms, banks, and individual investors;
assets, such as stocks, bonds, futures, and options. In
context, the statistical properties of the time evolution of
price play an important role in the modeling of financ
markets. For example, the stochastic nature of the price
financial asset is crucial for a rational pricing of a derivati
product issued on it@3#. The initial price of a new product, a
new service, or a new stock certificate is determined by
tain economical guidelines. But after the introduction of t
new product into the market system, the actual price start
fluctuate due to the interaction between supply and dem
Hence the price leaves the initial value, and offers a stoch
tic behavior. The complete characterization of such a rand
1063-651X/2001/64~2!/026104~5!/$20.00 64 0261
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process requires a knowledge of the total probability dis
bution density. The difficulties in quantifying the fluctuation
of asset prices, originated by many interactions between
market elements considered above, are not only due to
complexity of the internal elements but also to the ma
intractable external factors acting on it. To this aim, mod
should be studied which capture the key features of the
nancial markets. Here we are interested in the time evolu
of S(t) as the price of a financial asset at timet. The most
common model of price dynamics, known as the geome
Brownian motion~for details and history, compare Ref.@1#!
assumes that lnS(t) is a diffusive process. However, such a
approach provides only a first step toward the behavior
served in empirical data. Systematic deviations from
simple model predictions were observed@12#. A more de-
tailed discussion can be found, for instance, in Refs.@1,3#
and the literature cited there. Several alternative models
yond geometric Brownian motion were proposed such as
Lévy stable non-Gaussian model@13#, Student’st distribu-
tion @14#; and a mixture of Gaussian distribution@15# and the
truncated Le´vy flight, either abrupt@16# or smooth@17# or
scale invariant@18#; for other models, see Ref.@3#. There
seems to be well established evidence that the distribu
function in mind offers a non-Gaussian behavior, the cen
of which can be adjusted by Le´vy distribution. Consequently
the price volatility reveals a nondiffusive behavior at least
a small time scale. Although the distribution is long tailed,
reveals finite moments of any order@19#.

Whereas most previous approaches were based on a
sumption of the price probability distributionP(t), and were
quantified by numerical investigations, the aim of this pap
is to propose a dynamical equation forP(t). Our ambition
follows the line given by Black and Scholes@20#, which was
successful in deriving a partial differential equation for
geometrical Brownian process. However, this equation d
not take memory effects into account. On the other ha
such a feedback mechanism was considered in econoph
by so called ARCH@21# and GARCH processes@22# in a
first approximation. Because price fluctuations at timet are
likewise determined by changing prices at previous timet8
,t, the evolution equation for the probability distributio
P(t) should include a memory term as a new ingredie
Moreover, we have supposed that this feedback is de
©2001 The American Physical Society04-1
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mined in a self-organized manner by the price distribut
itself. As demonstrated in Ref.@23#, such a feedback cou
pling can give rise to anomalous diffusion or localizatio
Note that a relation between economic fluctuations a
anomalous diffusion was even discussed@24#. The basic
equation we have proposed is derived in the context of
tistical physics by applying a projection formalism due
Mori @25#. As the result a nonlinear evolution equation
Fokker-Planck type with an additional memory kernel
found, the form and relevance of which are studied in t
paper.

II. MODEL

A. Return

In this section the central quantity of the model is intr
duced, and its relation to a linear Fokker-Planck equatio
discussed. As stressed above,S(t), the price of a financial
asset at timet, is the fundamental function for subseque
analysis. Because, after an initial time interval, the price
comes a fluctuating quantity, it is reasonable to investig
the probability distribution function of an appropriate st
chastic variable. One choice is to analyze the return~see Ref.
@1#!,

l ~ t !5 lnFS~ t1Dt !

S~ t ! G , ~1!

whereDt is a well defined short time interval. Assuming th
trading is continuous and the limitDt→0 exists, it seems to
be reasonable to use the velocityv(t)5 l (t)/Dt>] ln S(t)/]t
as a quantity to characterize asset price fluctuations. The
evolution ofv(t) can be described when the probability de
sity functionP(v,t) is available. HereP(v,t)dv is the prob-
ability of finding a velocity betweenv andv1dv. Immedi-
ately after the introduction of the new product or the n
stock, the velocityv apparently shows a systematic chan
following global trends. Furthermore, one expects the
pearance of Gaussian-like fluctuations around this determ
istic behavior. ThusP(v,t) should follow a Fokker–Planck
equation:

]P~v,t !

]t
5D

]2P~v,t !

]v2
2

]

]v
@F~v !P~v,t !#. ~2!

The diffusion coefficientD determines the random motion o
the velocityv, whereas the drift forceF(v) defines the gen-
eral trend of the price evolution. Here it is supposed that
trend is constant, at least approximately for a sufficient lo
time interval, i.e., the drift force is assumed to be fix
F(v)5F0. Equation~2! will be problematic considering its
asymptotic behavior in the long time limit, where Eq.~2!
leads to a Gaussian behavior corresponding toP(v,t)
;exp(2@v1F0t#

2/4Dt). Such a behavior is not observed b
empirical data@12,13#. Instead, large price fluctuations occ
much more frequently than predicted by the Gaussian
We think that these deviations originated from the stro
coupling among all prices, and the interaction with oth
02610
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economical degrees of freedom which cannot be specifie
detail. This fact is a characteristic feature of a variety
different complex systems.

B. Nonlinear Fokker-Planck equation

In this subsection a generalized equation is propo
where couplings, such as those mentioned above are
closed. The situation for the asset price fluctuations is co
parable with other problems in statistical physics of comp
systems. In case information for all degrees of freedom
available, one could formally derive an evolution equati
for the total probability density function. For instance, t
Liouville equation is such an evolution equation describi
thermodynamic systems. A general property of those eq
tions is the local character with respect to all degrees
freedom and time. Unfortunately, neither in physics nor
financial systems can complete knowledge of all constitu
elements be quantified. Even the set of all prices compr
only a sufficiently small subset of all degrees of freedo
relevant for the dynamics of an econosystem. According t
standard method of statistical mechanics, let us eliminate
unknown or irrelevant degrees of freedom by a suitable p
jection operator formalism@25#. Note that the procedure i
universal, and does not depend on special realizations o
underlying complex systems such as many-particle syste
financial markets, social populations, etc. The application
an appropriately chosen projection operator@25# on the total
probability distribution function leads to the so calle
Nakajima–Zwanzig equation@26#, which describes the evo
lution of a reduced distribution function in terms of the r
maining relevant variables. It should be stressed that the
sulting equation is rigorous now as before. In our model
variablev is assumed to be the relevant one. Consequen
the equation forP(v,t) reads

] tP~v,t !5M̂ ~v,t !P~v,t !

2E
0

t

dt8E
2`

`

dv8K̂~v2v8,t2t8!P~v8,t8!.

~3!

Both the operatorM̂ (v,t) and the memory kernelK̂(v,t) are
well defined formal expressions which determine the dyna
ics of the probability density function. The procedure yiel
the required memory effect in a natural manner. In this se
Eq. ~3! can be regarded as a more general approach as
above mentioned ARCH and GARCH processes. To proc
further, one needs a suitable representation ofM̂ and K̂,
respectively. If memory effects are excluded completely,
other degrees of freedom projected out are apparently in
pendent external stochastic variables. Thus the first term
Eq. ~3! can be taken as the Fokker-Planck operator in acco
ing to Eq.~2!,

M̂ ~v,t !P~v,t !5D
]2P~v,t !

]v2
2

]

]v
@F~v !P~v,t !#, ~4!
4-2
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VARIATIONS OF THE ASSET PRICES PHYSICAL REVIEW E64 026104
with the diffusion coefficientD and the drift forceF(v,t).
The memory term takes into account the history of the pr
evolution. Formally, the kernel can be rewritten as

E
0

t

dt8E
2`

`

dv8K̂~v2v8,t2t8!P~v8,t8!

5E
0

t

dt8E
2`

`

dv8K~v2v8,t2t8!
]P~v8,t8!

]t8
. ~5!

One can easily confirm that Eq.~5! guarantees the conserv
tion of the probability*dvP(v,t)51 at all timest. For this
purpose Eq.~3! is integrated over all velocitiesv, and Eqs.
~4! and ~5! are taken into account. IntroducingP0(t)
5*2`

` dvP(v,t),

] tP0~ t !52E
0

t

dt8E
2`

`

dvK~v,t2t8!
]P0~ t8!

]t8
. ~6!

The Laplace transformation of Eq.~6!, with respect to the
time, leads to

zP0~z!2P0~ t50!52E
2`

`

dvK~v,z!@zP0~z!2P0~ t50!#,

~7!

which has the two solutions:zP0(z)5P0(t50) and
*2`

` dvK(v,z)521. Because the second one is not a re
able solution, only the first solution is relevant for furth
considerations. But this relation corresponds to the ab
mentioned conservation law*dvP(v,t)51. Together, Eqs.
~3!–~5!, with the specified memory kernel~see Sec. III!, are
the basic equations for the subsequent analysis.

III. RESULTS

A. Memory kernel

To study the influence of the memory effects in detail,
have to specify the memory kernelK(v,t). It is not yet en-
tirely clear how one should approach the problem. But o
can gain insight by learning from such completely differe
complex systems as undercooled liquids, where the con
considered in this paper was applied successfully in expl
ing properties of dense systems@27,28#. An idea similar to
arguments used in mode coupling theory was also rece
adopted to study anomalous diffusion@23,29,30#. The main
assumption for our model is that feedback originates from
coupling among prices, and consequently the kernel can
considered asK(v,t)5K@P(v,t)#. This relation implies the
reasonable claim that the characteristic time scale of
probability function also the time scale of the memory ess
tially determines, in other words, if the prices fluctuate d
ing a certain time interval, then the memory term sho
relax within the same order of magnitude. As a further co
sequence of the assumption, the structure of the kernel l
to a nonlinear autonomous equation which is a feature
systems incorporating scaling behavior and self-organizat
Now let us expand the memory kernelK@P(v,t)# in terms of
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the probability distributionP(v,t). The general form of such
an expansion can be written in the form

K~v,t !5P~v,t !u (
n50

`

lnP~v,t !n, ~8!

whereu is an exponent specified in the subsequent disc
sion. Note that in the case of undercooled liquids the proj
tion procedure suggests an exponentu52 @27,28#, which is
not maintained necessarily when the conceptual framew
is applied to financial systems. Finally, Eqs.~3!–~5!, com-
bined with the leading term of Eq.~8! yield a generalized
nonlinear Fokker-Planck equation

]P~v,t !

]t
5D

]2P~v,t !

]v2
2

]

]v
@F0P~v,t !#

2lE
0

t

dt8E
2`

`

dv8Pu~v2v8,t2t8!
]P~v8,t8!

]t8

~9!

@with l5l0 andF(v,t)5F0#. Equation~9! is similar to that
given by Black and Scholes@20#; however our basic equatio
includes an additional nonlinear memory term describing
required feedback mechanism. A conventional scaling tra
formation for P, v, and t offers that the memory term is
relevant foru,3. A more detailed analysis of Eq.~9! with a
d-dimensional vectorv instead of the componentv suggests
a critical dimensiondc52/(u21). Below this critical dimen-
sion, the occurrence of anomalous behavior is expected
first view it seems to be an obvious assumption that mem
kernel @Eq. ~8!# behaves regularly, i.e.,u is a non-negative
integer exponent. Due to the projection formalism@25#, u
50 and 1 are excluded. Consequently, onlyu52 remains.
This case, as already pointed out, is well known in study
undercooled liquids@27,28# and very recently in analyzing
anomalous diffusion in a glasslike environment@23#. There-
fore, it is useful to summarize some results of the previo
approaches@23,29,30#, which are relevant in proceeding fu
ther in the present paper. In particular, the caseu52, leading
to the critical dimensiondc52, can be studied using a pe
turbative renormalization group method@23#. The analysis
offers the existence of several anomalous diffusion regim
induced by the strength of the coupling constantl and the
realization of the drift force. For example, for a vanishin
drift term andl,0 a superdiffusive behavior was found
be manifested by the behavior of the mean square displ

ment v2̄;t2/z with a dynamical exponentz,2, whereas a
positive couplingl.0 gave rise to localization evident b

the relationv2̄;const. Wheneveru52, Eq.~9! can likewise
be analyzed numerically by mapping the problem on
simple lattice model with hopping processes under the inc
sion of a feedback mechanism@29,30#. In case of a negative
feedback couplingl,0, the numerical simulations con

firmed the superdiffusive behavior withv 2̄;t1.37 for d51
@29#, which is in reasonable agreement with the one lo
4-3
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MICHAEL SCHULZ, STEFFEN TRIMPER, AND BEATRIX SCHULZ PHYSICAL REVIEW E64 026104
renormalization group approach 2/z53/2 @23#. In two dimen-
sions both renormalization group and numerical simulati
@30# led to a diffusive behavior with a logarithmic correctio

v2̄;t ln t. For a positive couplingl.0, localization was ob-
served to be renewed. The occurrence of localizat
strongly indicates the convergence of the probability fu
tion P(v,t) to a stable functiong(v) for sufficient long times
P(v,t→`)5g(v), which are discussed now. Using the pr
vious results@29# for u52, one obtains an exponential dec
for largev and a Lévy distribution

g~v !;@11~v/v0!b11#21 ~10!

for small v. The memory exponentu52 leads to a Le´vy
exponentb'0.34. In Fig. 1 the numerically simulated st
tionary probability distribution for a random process cor
sponding to Eq.~9! is depicted, whereF050, u52, andl
.0 are taken into account; for details of the simulations,
Ref. @29#. The appearance of such a stationary solutiong(v)
reflects even the situation expected for the evolving a
price system@12#. Using the returnl 5vDt ~for small Dt,
e.g.,Dt51 min) as a measure for the velocityv, Mantegna
and Stanley found@12#, based on numerical study, a Le´vy-
like regime described byg( l );@11( l / l 0)b11#21 with the
exponentb'1.4 for smalll , whereas an exponential deca
g( l );exp(2gl) occurs for largel . Obviously, both ap-
proaches@12#, and those presented foru52, indicate a uni-
versal behavior forg(v) which cannot be explained using
simple Gaussian model. But apparently the exponenb
'1.4 is much larger than the exponentb'0.34 obtained for
u52. However, as already stressed above, it cannot be
cluded that financial markets will be controlled by a non
teger exponentu in the memory kernel; this is discussed
Sec. III B.

FIG. 1. Numerical simulation of the stationary probability di
tribution g(x) for a random process corresponding to Eq.~9! with
F050, u52, andl.0. For smallx, denoted by ‘‘Levi,’’ a Lévy
distribution with the exponentb.0.34 is observed, whereas fo
large x, denoted by ‘‘exponential,’’ an exponential distribution
realized.
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B. Asymptotic solution

In this section a relation between the memory exponenu
and the Le´vy exponent b is derived. To this aim the
asymptotic distribution functiong(v) will be determined, the
existence of which was already argued above. In a first s
let us eliminate the drift term from Eq.~9!. This term repre-
sents the mean change of the price fluctuations, i.e., the t
of the time evolution of prices. As mentioned above, the d
force is a constant quantityF0. Making a simple shiftv
→x2F0 t the evolution equation for the price fluctuation
reads

]P~x,t !

]t
5D

]2P~x,t !

]x2
2lE

0

t

dt8

3E
2`

`

dx8Pu~x2x8,t2t8!
]P~x8,t8!

]t8
. ~11!

The probability distribution functionP(x,t) converges to a
stationary distributiong(x). Because we are interested in th
asymptotic limit for long times, let us make the ansatz

P~x,t !5g~x!1k~x,t !, ~12!

with k(x,t)→0 for t→`. The Laplace transformation of Eq
~12! with respect to time leads toP(x,z)5g(x)/z1k(x,z),
wherek(x,z) is regular forz→0. Thus the singular part o
Eq. ~11! for z→0 defines an equation for the stationary s
lution.

D
]2g~x!

]x2
5lE

2`

`

dx8gu~x2x8!g~x8!2lgu~x!. ~13!

Note that Eq.~13! follows from Eq. ~11! after a Laplace
transformation using the initial conditionP(x,0)5d(x). The
Fourier transformation of Eq.~13! with respect to the nor-
malized price fluctuationsx leads to

Dk2g~k!52lg(u)~k!g~k!1lg(u)~k!, ~14!

whereg(u)(k) is the Fourier transform ofgu(x). Hence the
formal solution forg(k) is given by

g~k!5
lg(u)~k!

Dk21lg(u)~k!
. ~15!

Especially, fork→0, it follows that

g~k!5F11
Dk2

lg(u)~0!
G21

. ~16!

This solution corresponds to the asymptotic behavior
largex→`

g~x!;S lg(u)~0!

4D D 1/2

expH 2S lg(u)~0!

D D 1/2

uxuJ , ~17!
4-4
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i.e., the exponential behavior for largex is guaranteed for al
exponentsu provided g(u)(0) is finite. The expansion
g(u)(k)5g(u)(0)1c1k21••• cannot be used for the discu
sion of largek and smallx, respectively. Here a power law
g(x);x212b, i.e., g(k);kb andg(u)(k);ku(b11)21, is as-
sumed. A simple power counting leads to the relationb
53/u21. This relation is again consistent with the requir
mentu,3. Because of the fact that real price variations
characterized by a Le´vy exponentb.1.4 @12#, a memory
exponentu.5/4 is concluded.

These results show that financial processes can be
scribed by evolution equations containing memory term
These terms may have a more complicated structure@com-
pare Eqs.~8! and ~9!#, but the asymptotic behavior is we
reflected by the leading term in Eq.~8!.

IV. CONCLUSIONS

In this paper an attempt at an analytical approach for
description of market dynamics is proposed. In particula
dynamical model for price distribution is considered. As t
main ingredient, a nonlinear memory term is included,
sponsible for the feedback coupling of the momentary pr
s
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distribution function to its change in the past. Such a fe
back coupling is a feature of a dynamical complex system
systematic approach including memory effects is still op
However, our paper reveals that memory effects can lea
dramatic changes in the behavior as well as in the long
the short time limits. The empirically well established obs
vation of a non-Gaussian distribution is confirmed in a str
ing manner. The numerical finding@12# is also in accordance
with analytical results based on a generalized Fokker-Pla
equation with a self-consistent memory term. Univer
properties of the price fluctuations are achieved if t
memory kernel offers a power law behavior with respect
the probability density. Apparently a rigorous model shou
include not only the memory kernel in leading order pr
sented by Eq.~9!, but also higher order terms according
the expansion in Eq.~8!. The main result of our paper is t
show that, if memory effects are relevant for market s
narios, the asymptotic behavior of small and large price fl
tuations can be explained by a nonlinear Fokker-Pla
equation. Up to now it is not entirely clear which compl
mentary principle in economics determines the memory
ponent u. However, our analysis suggests an exponenu
.5/4.
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